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ABSTRACT

The layout problem for graphs, the problem of automatically
generating a representation of a graph on a two-dimensional surface,
has been of interest in specific applications for many years, although
little work has been done on the general problem. In this thesis
three approaches are taken towards solution of the problem. The
first approach defines general layout qualities believed to be desir-
able. Means for measuring these qualities in layouts and algorithms
for their realization are developed. A graph layout building and mod-
ification system is described which provides an experimental environ-
ment for such layout algorithms. The second approach considers
layout from an application dependent point of view. A classification
of layouts into types is developed according to application, and layout
algorithms for each type are discussed. In this classification, a
correlation is found between complexity of layout type and complexity
of layout algorithm. An extension of the above graph layout building
system is designed, which allows for inclusion of application depend-
ent information in layout processing. 'I.'he third approach, that of
considering the layout of modifications of graphs, rather than layout
of whole graphs, is briefly considered. It is concluded that this

third approach is the least effective for finding solutions to the layout

problem.
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Chapter 1

INTRODUCTION*

The "layout problem," the problem of generating an arrange-
ment of objects on a two dimensional surface, was mentioned by
Sutherland (34) as one of ten unsolved problems in computer graphics.
Solutions to the problem for some specific applications have been
found, but the general problem still remains unsolved. This work
discusses the layout problem for the graph theoretic type of graph
which Berge (5) has defined.** Such graphs consist of elements
called nodes (or vertices) which are connected to one another by
links (or edges). We will use the terminology "node" and “link."
Links will be denoted by single letters or numbers or by a parenthe;
sized pair listing the nodes they connect, for example, (a,b). Nodes
will be indicated by letters or numbers.

The layout problem is then, given a fixed graph theoretic
graph, which by definition is only a structural entity and has no
physical characteristics, automatically generate a two-dimensional
representation or layout of this graph. Many layouts are possible
for each graph. In this work we only consider layouts in which links

are drawn as series of straight-line segments. Line segments of

*This paper has also been included in the publication series
of the Harvard Center for Research in Canputing Technology as Technical
Report 1-71.

**Additional references on graph theory are: Busaker and
Saaty (10), Liu (25), and Ore (31).



links (also referred to as link segments) will be denoted by single
letters or numbers or by a bracketed pair listing the endpoints of the
line segment, for example, [a,b]. A point at which two link seg-
ments of a link are connected will be referred to as a '"bend point,"
or simply a 'bend."

In this dissertation no general solutionto the layout problem
for graphs is given, although some generally desirable criteria are
discussed, along with methods by which these criteria may be
realized in layouts. Furthermore, we consider solutions to graph
layout in several particular applications in which graphs are used
a;ld in which layouts are needed. Many questions are brought out in
these discussions, which remain unanswered and which require
further work.

As an historical note, the author first dealt with the layout
problem while attempting to develop an output program for AMBIT /G
data. AMBIT/G is a computer language, the data and program of
which are in the form of directed graphs. Thus the output problem
for AMBIT/G was to generate and display a layout of some portion
of the graphical data.

Two basic questions arose in the development of the output
program, the first of which was how much of the layout was to be
prespecified by the user and how much was to be generated auto-

matically. Secondly, in the case of automatic generation of layout,



what criteria should be used and how should these criteria be
realized ?

The AMBIT /G output program finally developed allows for
both prespecified and automatic layout. Automatic layout is used as
a default condition in the absence of layoufc prespecification. Pre-
specification is accomplished by the building of a cumbersome
super- structure over the data to be displayed’=< (see Appendix 1 for
details), and only relationships between node positions can be speci-
fied.** Links are always routed automatically.

The automatic portion of the output program uses very
simple criteria, disregarding such information as the original layout
of the data and the general properties of the data graph. First, all
nodes are placed on a grid, and then links are routed. When posi-

tions are not prespecified, automatic node placement is performed

Even without layout prespecification, some super-structure
has to be built in order to specify the portion of the graph to be out-
put. This makes the whole output process difficult to use. In fact,
another easier means for output was devised by one of the imple-
menters of AMBIT /G. This was ''on-line' as opposed to the method
discussed above. In the '"on-line' method the user started a display
by naming a node which then appeared on the screen. He simply
indicated which node he wished to appear next by pointing to a link
origin in a node on the screen, or by naming another node and indi-
cating where it was to appear. This method avoids all the complica-
tions of automatic layout generation.

A%

For example, we may specify that one node is to be placed

to the east of another node.



as follows: if the node to be placed, a, is linked to a node, b,
already placed, node a is positioned on a grid point adjacent to

node b and in the direction of the connecting link from b, which
direction is fixed, given b and the connecting link. If this position
was previously occupied, or if node a has no connections with nodes
already placed, it is placed to the right of those nodes already placed.
Thus, the first criterion for automatic node placement is node con-
nectivity, and the second is geometric linearity of a sort.

Links are routed equally as simply, with paths deviating from
straight lines only to avoid nodes. No attempt is made to avoid inter-
sections, or to provide regularity. Thus, this simple solution to the
AMBIT /G output problem avoids some of the more important con-
siderations of the layout problem.

In this dissertation we will discuss some of the more basic
problems involved in automatic layout generation for graphs and
some possible approaches towards solution. The second chapter
examines the more general comprehension criteria for layout. An
attempt is made to separate out those application independent quali-
ties of graph layouts which make some layouts more readable than
others. Relevant literature from the fields of perception and aesthe-

tics is considered. Discussion of the measurement and realization

*
In other words, the default condition that a node is placed to
the right of those already placed.



of such qualities is given. Included in this chapter is a description
of the MOD system, a graph layout input/output system designed for
experimentation with these application independent criteria.

The third chapter deals with the layout problem from an
application dependent point of view. A defense is given for the argu-
ment that the application dependent approach may be more practical
than the approach of chapter 2 for graph layout generation in some
cases. A means for classifying several commonly used layout types
for the purposes of layout is given. These layout types are dis-
cussed along with some layout algorithms. The chapter concludes
with a design for including layout type information and type dependent
layout generation in a graph layout input/output system like MOD.

Finally, the fourth chapter briefly considers another
approach to the layout problem, that of laying out graph modifica-
tions, rather than whole graphs. This approach was found to be less

productive than those taken in chapters 2 and 3.



Chapter 2

GENERAL LAYOUT CRITERIA

In attempting to characterize what makes a layout of a graph
a good representation of the graph we must consider those overall
qualities of layout which add to the readability of the graph repre-
sentation. Here, we make an attempt to separate out and categorize
those qualities which are generally grouped together so as to obscure
definition. The categorization is based on the functions these quali-
ties perform. Three broad categories which seem to account for
graph readability are regularity, directionality (of reading), and
simplicity. However‘, it will be shown that the third category is
somewhat dependent on the first two. This problem of characteriz-
ing these qualities has previously been considered in studies of
aesthetics and of perception.

After defining the qualities for overall layout, the feasibility
of their measurement and realization in layout must be considered.
Some work has been done in the direction of realization in the MOD
system.

Section 2.1 discusses regularity, directionality, and sim-
plicity, and considers previous work on this topic. Section 2. 2 dis-
cusses the measurability of these qualities and the possibility of

their realization in layout generation, and section 2.3 reports on the



work done in the MOD system.

It must be emphasized that the material of section 2.1 is a
first attempt at classification of the layout characteristics which
add to readability. This, by nature, is a subjective topic. The
reader may disagree with the effectiveness and classification of some
of the qualities discussed. He may also think of other qualities
which should be included. What we aim at here is to provide a
framework in which we can name and classify graph layout qualities,
and understand and measure their effects. The contents of section
2.1, then, is only a beginning in the direction of this goal, and is
based to some extent on the subjective views of the author, and

those in her proximity.

2.1 REGULARITY, DIRECTIONALITY AND SIMPLICITY

2.1.1 Regularity

The category of regularity is a broad one. It includes those
characteristics of layout which involve repetition, consistency, and
the occurrence of easily recognized geometrical forms. Regularity
seems to be one of the most important qualities responsible for
making graph representations or layouts readable. Certainly, large
layouts must be read in subsections, and where subsections are
similar, the layout is more easily subdivided by the eye. Further-

more, the fewer the types of subsections there are to comprehend,



the easier the pattern matching necessary for reading. It is clear
then that the larger the layout, the more important regularity
becomes for comprehension.

Let us consider the most obvious type of regularity, repeti-
tion. There are several forms repetition may take. We first name

and define these forms:

1) Literal repetition: two subparts of the 1ayout* are congruent
and have the same orientation (also referred to as identical repeti-
tion).

2) Symmetrical repetition: two subparts of the layout are
reflections of one another, with respect to an axis; i.e., if one of
the subparts is flipped over this axis, it will lie on top of the other
subpart.**

3) Rotational repetition: two subparts of the layout are congru-
ent but have different orientations, or, the mirror image of one
subpart is congruent to another subpart, but the two subparts do not

fulfill the requirements of symmetrical repetition; i.e., their

orientations are different.

e
b4

It is assumed here that the subparts referred to here and
below lie in different positions.
e
Point symmetry, in other words, symmetry with respect to
a point (such as that found in a pin wheel) is not considered here.



4) Similar repetition: two subparts are geometrically similar
to one another but not congruent, or, the mirror image of one sub-
part is geometrically similar, but not congruent, to another subpart.

Let us first consider literal repetition. When a subpart of a
layout is repeated exactly one or more times, it tends to identify
itself as a distinct subpart of the layout, lending to the viewer's
ability to subdivide the layout. But the number of these repetitions
which may exist in a good layout is limited. For example, quickly
glance at figure 2-la. The structure is quite clear. Now do the
same for figure 2-1b. How many nodes are there? In 2-1b the
number of repetitions, it seems, are too many to comprehend at
once, whereas in 2-la we can easily do this. Now if we modify 2-1b
slightly to obtain 2-1c, we notice that the result is much easier to

read. The repetition is on two levels; we read the layout as three

(a) (b) (c)

Figure 2-1

units of four nodes each. We are again reading the layout using
literal repetition, but more easily than in 2-1b, since the nodes are

divided into countable units. Thus repetition may occur at many



levels in a layout, and the layout remains readable as long as the
number of repetitions of a given unit at a given level remains easily
countable.

We notice that repetition may describe the relationships of
non-distinct subparts of a layout as well as those of distinct subparts.
For example, we understand the layout of figure 2-2 easily because

we see four identical, but non-distinct subparts.

Figure 2-2

Symmetrical repetition also acts as an aid to comprehension
of layouts. For example, in figure 2-3a, the right side is a reflec-
tion of the left with respect to a vertical axis, adding to readability,

whereas in 2-3b, there is no symmetry.

(a) (b)

Figure 2-3

10



There is some question as to whether rotational repetition
aids significantly in layout readability. It is quite clear that rota-
tional repetition is not as effective as literal or symmetrical repeti-
tion. How much clearer figure 2-4a is than figure 2-4b seems
mainly to depend on the particular viewer's ability to identify rota-

tional instances.

(2) (b)

Figure 2-4

There is also some question about the advantage of similar
repetition. One factor which seems to determine the ease with
which one detects similar instances in a layout is the closeness in
size between the two instances. For example, parts (i) and (ii) in
figure 2- 5a are seen as similar much more easily than parts (i) and
(11) in figure 2-5b. This phenomenon may be related to that of size
consistency, which is discussed below. Orientation also seems to
contribute greatly to the detection of similarity. When the similar
instances are oriented identically, or when the reflection of one
instance with respect to some axis is oriented identically to the other

instance, the two similar instances seem much easier to associate

11



Figure 2-5

than two similar instances not oriented in these ways. Examine,
for example, the pairs of triangles in 2-6a and b as opposed to the

pairs in 2-6c and 4.

A

(a) (b) (c) (d)

Figure 2-6

We must also consider as part of regularity, the occurrence
of certain very familiar, easily recognized geometrical patterns
such as lines, triangles, squares, regular polygons, etc. These
familiar aids help the viewer to organize a layout, since they are
easily seen when they occur, and thus lead to a faster comprehension
of a layout.

A main component of regularity which seems to underlie much

12



of what was mentioned above is what we shall call size and distance
consistency. ¥ In general, this implies equivalence of link lengths,
where possible, and, at a more subtle level, what Baecker (4) calls
fidelity, which will be described below. Applying the equivalence
criterion where possible, similar images tend to become closer in
size, some literal, symmetrical, and rotational repetitions tend to
appear, and in general the graph layout becomes more regular. This
explains the discussion of figure 2-5. Application of this constraint
in its literal form to the layout of figure 2-7a might result in the lay-
out of figure 2-7b, a definite improvement. This length constraint,
which we will call "link length consistency,'" will be taken to mean

that as few different iink lengths as possible appear in the layout.

<1

(a) (b)

Figure 2-7

e

“The concept of size and distance consistency is intended to
apply to layouts in which links consist of a single line segment. The
extension for multi- segment links, although not considered here,
might be worthwhile to explore.

13



Baecker has expressed size and distance consistency in
another form, which he calls fidelity. He suggests that graph lay-
outs are better, the more the graph-theoretic distances and layout
distances between nodes correspond. In this sense he is concerned
with how faithful a representation of a graph is to the graph itself.
For example, in figure 2-8a, node a is separated from node b by
at least two links (hence, the graph-theoretic distance is two), and
yet it is drawn closer to node b than to node ¢, which is adjacent

to a. In figure 2-8b the layout has better fidelity.

Figure 2-8

It seems appropriate to discuss one final layout character-
istic, balance, under the topic of regularity. A crude definition of
balance might be evenness of node and link distribution throughout a
graph layout. We want to separate symmetry from balance, how-
ever, so as not to attribute clarity to balance when it is due to sym-

metry. Let us look at the graph layouts in figure 2-9a and b. The

14



amount of symmetry seems the same in both, but b is much better
balanced than a, in other words, the nodes and links are distributed
more evenly. There is some question as to whether balance con-
tributes significantly to readability, or whether it just adds to the

aesthetics of a layout.

(a) (b)

Figure 2-9

In summary, we have included under the category of regular-
ity several layout qualities, all of which contribute to the readability
of graph layout by adding consistency or by facilitating some form of
pattern recognition. This category includes literal, symmetri-
cal, rotational, and similar repetition of both distinct and non-
distinct layout subparts, which may occur on many levels. The
appearance of familiar figures was considered, as well as consist-
ency of size and distance in layout. Finally, balance was discussed

as a possible aid to readability.

15



2.1.2 Directionality

Another category of qualities, which we shall call direction-
ality, deals with the layout as a whole rather than in terms of its
parts. Directionality includes those qualities which aid in a directed
reading of a layout. This may be taken literally, or may be con-
sidered at a more subtle level. To some extent, then, directionality
seems to deal more with links and their paths in a layout, rather
than with nodes.

What first comes to mind is the nature of the links in a lay-
out. If the layout is directed* is there some consistency in the
direction in which the arrows point? Flow-type and network diagrams
by convention ask that there be some directional consistency, often
requiring that arrows point predominantly in one direction, say to the
right. The constraint of directional consistency may also be met
when arrows point consistently toward, away from, or around a
center, as in figure 2-10. In general, directional consistency for
directed layout means that there is some regular manner in which
arrows are arranged. It is clear that this quality aids in the ease of
reading directed layouts by providing some pattern in eye movement.

Two other qualities seem to be good candidates for

"In other words, links have a direction, indicated by arrows.
This type of graph representation is used when the underlying graph
is directed. :

16



Figure 2-10

directionality. These are, first, the number of bends, or equiva-
lently, link segments used in representing the links of the graph,
and, second, the total link length used in representing these links.
We will call these qualities '"'number of bends' and ''total link length,'
respectively. Both qualities have been considered as layout criteria
in circuit layout. In the first case, clearly, the fewer the bends in

a representation of a link, the easier it is for the eye to follow its
path. Furthermore, in the places where bends occur, in some
cases, there is a tendency for the eye to create nodes, for example,

in figure 2-11.

Figure 2-11

17



In the second case, it seems obvious that the greater the total
link length for a layout, the more complex the layout will be. First of
all, we find that the more link length there is, in general, the greater
the probability that bends will also be present. Furthermore, when
link length is in excess in a layout, it is usually because some other
criterion such as the number of intersections is being minimized in
the layout. Thus the complexity due to large link length in a layout
may really be due to inherent graph complexity in the underlying
graph. To illustrate, consider figure 2-12a. We may attribute its
complexity to link length (and to the number of bends). However, we
see in figure 2-12b, the same graph represented with a smaller total
link length contains other features which reflect the inherent com-

plexity of the underlying graph.

(a) (b)

Figure 2-12

Another quality which seems to affect directionality in a layout

is the number of link intersections other than at nodes. As is well

18



known in graph theory, some graphs cannot be drawn on a two-
dimensional surface without intersections. These are called non-
planar graphs. In fact, the minimum number of intersections which
can be attained for any two-dimensional representation of a given
graph is inherent in the graph and is called the genus of the graph.*
For example, the graphs represented in figure 2-13 are non-planar.
We might require for readability that the number of inter-
sections in a layout be as small as possible for the underlying graph.
For instance, the minimum number for the graph represented in
figure 2- 14 is zero, and we find that 2- 14a is easier to comprehend
than 2- 14b, where the intersection adds complexity similar to that

added by bends in links. A further complication produced by

Figure 2-13

*With this quality, one of the main problems underlying the
layout problem surfaces. This is the problem of differentiating what
part of the layout is determined by the graph theoretic structure of
the underlying graph and what part depends only on a Euclidean
metric. In the case of intersections the effects of graph theoretic
structure are quite clear, but in most cases, the effects are not as
clear.

19



(a) (b)

Figure 2-14

intersections is that faces are created visually which are not true
graph theoretic faces. This also leads to difficulty in comprehension.
But consider the layouts in figure 2-15. The number of inter-
sections in 2-15a is much greater than in 2-15b, yet we do not find it
particularly more complex. The same situation occurs in comparing
2-15b to 2-15¢c. Here we have a case where the intersections, due to
their number and regularity, do not detract from the directionality of
the layout. Thus the importance of the minimum intersection con-
straint is more difficult to assess than was first expected. We must
also take into account how much the particular intersections add or

detract from directionality.

? W 9 -~ 9 @ —— S— | 3 -
° —e — | e ——— o
— —o — | «
— - *—— ——» — - o
P i P L ¢ & o— o &
(a) (b) (c)
Figure 2-15
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We will now consider a more subtle aspect of directionality,
that involving link (or line segment) orientation. Two questions arise
when we consider orientation. First, what effect does the variation
of the slope of the link segments have on the layout? And second, is
a generally horizontal-vertical link segment orientation better than
any other general orientation?

To answer the first question, examine figure 2-16. The lay-
out in figure 2-16a is quite clearly better than that of figure 2-16b.

There are several factors which contribute to this difference. In one

(a) (b)

Figure 2-16

figure, the number of parallel lines is large, the number of different
slopes is small, and angles between link segments are limited to 0°
and 90°. In the second figure this is not the case. Let us consider
each of these factors separately.

We first conjecture that parallel lines are much more effec-
tive in layout than non-parallel lines. The larger the number of

different link slopes in a layout the more confusing it is. Examine

21



the gradation of the layouts in figure 2-17, for example. Recurrence
of a particular slope in the form of several parallel lines tends to
reinforce a direction in the layout. Whereas, lack of such reinforce-

ment may generate directional confusion. This quality will be

referred to as 'mumber of link slopes,' or, equivalently, "amount of

parallelism ."

SoRap

Figure 2-17

We then ask whether certain angles between links are prefer-
able to others. One might first guess that 90° is a preferable angle.
However, in examining figure 2- 18, we see that this is not neces-

sarily the case. This first guess, we find, is instead accounted for

Figure 2-18

22



when we consider horizontal-vertical link segment orientation.
This lack of preference may be explained somewhat by our ability
and tendency to see things in perspective, and to give a three-
dimensional reading to a two-dimensional figure.

We will now consider the question of whether a horizontal-
vertical link segment orientation is preferable to any other. By
horizontal-vertical link segment orientation, more specifically, we
mean that the link segments of a layout are oriented either horizon-
tally or vertically. The answer to the question of whether such an
orientation is preferable is obvious in the comparison of figures
2-19a and b. The reason for this preference is not clear, although

it has been mentioned as an important factor by Birkhoff (6).

(a) (b)
Figure 2-19

“Actually, Birkhoff mentions two factors which might contri-
bute to this preference. One is what he calls '"equilibrium," which
accounts for whether a figure looks stable or unstable. The other
factor, which he calls ''the relation to a horizontal-vertical network, "
expresses the fact that humans prefer figures whose sides (link seg-
ments) fall on a horizontal-vertical network, or, as a second pref-
erence, on a network whose grid cells are diamonds. Birkhoff
relates this factor to our everyday experience.

23



Thus, if we were to pose the question about angle preference with the
example in figure 2-20, we might arrive at a different answer. This

can easily be explained by preference for horizontal-vertical orienta-

tion.

Figure 2-20

In summary, we have considered several layout qualities
under the category of directionality. These have the common fea-
ture that they all contribute to some directional organization of the
layout of a graph. The most obvious quality which has been con-
sidered is directional consistency in directed layouts. Bends in
links, total link length, and link intersections have also been exam-
ined for their effect on directionality. Aspects of link (or line seg-
ment) orientation in a layout have been discussed; this includes the
qualities of parallelism, number of different link slopes, and size of
angles between links in a layout. Finally, horizontal-vertical link

segment orientation preference has been considered.
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2.1.3 Simplicity

It seems appropriate that we should also consider simplicity
as a category of layout qualities, since most observers tend initially
to equate clarity and simplicity to some degree. ILet us try to define
what is meant by simplicity in a layout. The most obvious definition
is that a layout is simplest when it represents the underlying graph*
in the most straightforward manner possible, and it avoids unneces-
sary complication. For example, figure 2-21a is certainly simpler
than figure 2-21b, because of the unnecessary complication of a link

intersection in 2-21b.

(2) (b)

Figure 2-21

We must then ask what qualities tend to add to the unnecessary com-
plication of a layout. And, are these qualities different from those
discussed under regularity and directionality.

To review, the qualities included under regularity are those

which affect the reading of a layout through its subparts.

ES .
Note that this issue is not to be confused with the graph
theoretic simplicity (or complexity) of the underlying graph itself.
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Directionality, on the other hand, includes those qualities which

affect the overall direction and orientation of a layout. As can be
seen in many of the examples above, optimizing on the qualities dis-
cussed under these categories seems to produce simpler layouts.
Unnecessary complication can usually be pin-pointed as a lack of
optimization of one or more of these qualities. It seems, further-
more, that with the categorization given above, any quality which
affects the simplicity of a layout, is more specifically affecting either
the regularity or the directionality of the layout and should be cate-
gorized accordingly.

From this discussion, we conclude that simplicity, in itself,
should not be considered as a separate category, but as a complex of
the effects of qualities we've already considered under regularity and
directionality.

Some further examples may help convince us of this point.
Consider the pairs in figure 2-22. In each pair there is one layout
which is obviously simpler than the other. The difference in each
case can be understood by pointing to a quality or set of qualities
discussed under regularity or directionality which accounts for the
simplicity or complication present. In figure 2-22a the most obvious
quality is the number of intersections. In b, it is the existence of
literal repetition. In ¢ both symmetrical repetition and directional

consistency contribute, whereas in d we find that parallelism and
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horizontal-vertical link segment orientation accounts for most of the
difference. Finally, in e the separation into literally repetitious
subparts as well as symmetrical repetition makes one figure simpler
than the other. The reader should try several pairs himself, and
examine the qualities which account for simplicity or complication.
Perhaps, in this examination, other qualities which have not been

brought out above may appear.

2.1.4 Concepts in Aesthetics and Perception

In this section we will supplement the discussion of sections
2.1.1 through 2.1.3 by considering some relevant ideas found in the
literature of aesthetics and psychology. Both fields have dealt with
the question of what factors add to the readability of a two dimen-
sional layout, or, more generally, a two dimensional figure.

In studies of aesthetics, the motivation for answering this
question is to understand what factors add to the aesthetic quality of
a figure or an object. And as Birkhoff reports, Helmholtz stated:
"The more easily we perceive the order which characterizes the
objects contemplated, the more simple and perfect will they appear,
and the more easily and joyfully shall we acknowledge them "

(6, page 199).
In psychology, an understanding of the factors contributing to

readability of figures is linked to an understanding of human visual
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perception.

In the remainder of this section we will briefly describe some
of the relevant literature in these two fields. In doing so, we will try
to list those factors thought by the authors to contribute to reada-
bility, and briefly examine how these factors correlate with the ideas
given in the previous three sections.

Let us start with aesthetics. The wish to understand what
factors cause a sensation of aesthetic feeling when an object is per-
ceived, has long been of concern to philosophers. Few, however,
have attempted to describe aesthetic factors in a formal manner.

The one exception seems to be the careful work done by George
Birkhoff in 1933 on this subject.

To Birkhoff, '"the fundamental problem of aesthetics [is] to
determine, within each class of aesthetic objects those specific
attributes upon which the aesthetic value depends' (6, page 3). In
summary, Birkhoff first proposes that the measure of the aesthetic
value (M) of an object may be determined by the complexity (C) of the
object, and the order (O) or harmony of the object, according to the
formula: M = O/C. The complexity (C) of an object is a measure of
the amount of effort which must be expended in perceiving the object.
The measurement of complexity is different for each class of objects.

The order (O) of an object is determined as a summation of the

measures of various ''elements of order' for the object. The elements
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of order reflect the various attributes of the object contributing to or
detracting from the aesthetic value. Positive elements of order are,
for example, repetition, similarity, contrast, equality, symmetry,
balance, and sequence (6, page 9). Negative elements of order
include ambiguity, undue repetition, and unnecessary imperfection
(6, page 10). Birkhoff determines for each class of objects those
elements of order which he feels contribute to the measure of order
(0).

Having established this formalism, Birkhoff proceeds to
derive measures of aesthetic value (M), for several classes of
objects found in art, music, and poetry. For each such class, he
determines the set of elements of order to be considered in the
measure of order (O) for the objects in this class, as well as some
measure of the complexity (C) of these objects.

Of particular interest to us is his study of the class of poly-
gons, in that polygons are so integral a part of graph layouts in
which links consist of straight line segments. In the class of poly-
gons, the elements of order Birkhoff considers are briefly described
below:

1) Vertical symmetry: the figure is symmetrical with respect
to a vertical axis.
2) Equilibrium: the figure rests on a horizontal base with optical

center of gravity above this base.
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3) Rotational symmetry: the figure is symmetric with respect
to a point at its center.

4) Relation to a horizontal-vertical network: the sides of the
figure lie along lines of a horizontal-vertical network.

5) Unsatisfactory form: Birkhoff's "omnium gatherum' of

negative factors.

Given a figure, for each of these elements of order, i, a
quantity, X is determined, according to how the figure meets the
requirements of the particular element of order. The order (O) is
then the sum of the measures x, . The details of how a given x, is
calculated will not be mentioned here.

Birkhoff then proceeds to calculate the aesthetic value (M) for
a large group of polygons. According to his analysis, the square is
the most aesthetic of all polygons.

Let us now briefly compare Birkhoff's selection of aesthetic
factors with the group of readability qualities discussed in sections
2.1.1 and 2.1.2. The idea basic to both approaches is the concept
of order; underlying this we find that both approaches consider sym-
metry (although Birkhoff includes point symmetry), horizontal-
vertical orientation, diversity of directions, and similarity within
figures (a concept which Birkhoff discusses when he considers orna-

ments as a class of objects to be analyzed).

31



In addition, several factors not considered in sections 2.1.1
and 2.1.2 are brought out by Birkhoff. In this author's opinion, how-
ever, these factors tend to add more to aesthetics than to readability.
Among these factors are Birkhoff's idea of equilibrium, which relates,
in a sense, to the idea of balance (section 2.1.1), and the concepts of
unnecessary imperfection and ambiguity.

We will now examine some of the ideas found in the literature
of psychology, which are pertinent to the problem of readability. As
mentioned above, the problem became important in this field when
questions of human visual perception were seriously considered. The
basis of many of the current concepts in visual perception was devel-
oped in the writings of £he Gestalt school of psychologists. According
to Boring (7), this school began in 1912 with the writing of Wertheimer
which "treats of the general dynamics of the formation of form" (7,
page 252). Several well-known publications cover the concepts of the
Gestalt school, including those by Hartmann (18), Koffka (22), and
Katz (21).

As a brief background note, the approach of the Gestalt psy-
chologists differs from previous approaches to perceptual studies in
that the Gestalt studies were basically phenomenological, rather than
physiological. In other words, perceptual phenomena are '"allowed to
speak for themselves' (21, page 18), rather than being subject to

various types of physiological analysis.
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According to Boring, 'the chief contribution of Gestalt psy-
chology to the psychology of perceived form was its insistence that
the perception is formed under certain dynamical laws which give it
its specific psychological organization. A perception is not a copy of
its stimulus' (7, page 246). And according to Allport (1), these
"laws are natively given, and are a property of the organizing action
of the nervous system'' (1, page 115).

Allport states that ''no less than '114 laws of gestalten' have
been formulated by various writers' (1, page 113). In subsequent
literature, the list has been made more compact. Most of these
principles apply to visual form. Letus first summarize a few of the
more general principles of Gestalt with relevant quotations from
Allport (1, page 113):

1) Form-concept isomorphism: '"When one perceives an object
that object tends, psychologically, to take on form; and forms estab-
lish themselves and persist . . . such forms occur within the ner-
vous system or brain as macroscopic states or physiological config-
urations which are isomorphic . . . with the configuration of the
percept to which they give rise. "

2) Wholeness-character and relationships: 'The form always
has a 'whole-character' that transcends the characteristics of the
parts. ... The perceiving of relationships is an essential aspect of

wholeness in experience."
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Allport also includes other principles stating that laws
"intrinsic to the organism'' underlie the perception of form. The
perceived configurations tend to be "self-closing and to be simple,
balanced, and symmetrical. The tendency is toward 'good' form."
In addition, the configuration is organized by certain forces, ''giving
rise to segregation, groupings, combinations into subsystems, and
articulation. "

Some of the more specific laws for producing visual form
have been summarized by Katz. These specific laws are of more
interest to us, in that they describe in more detail what factors help
organize perception of a two-dimensional representation. A few of
these are (21, page 25 £t s )z

1) The law of proximity: ''Other things being equal, in a total
stimulus situation those elements which are closest to each other
tend to form groups. "

2) The law of similarity: ""When more than one kind of element
is pxlesent, those which are similar tend to form groups. "

3) The law of closed forms: ''Other things being equal, lines
which enclose a surface tend to be seen as a unit."

4) The law of ''good' contour, or common density: '"Parts of a

figure which have a 'good' contour, or common density tend to form

units. (Also known as the law of '""good" continuation.)
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Wertheimer (38) and Koffka, who have originated much of this
work, both discuss these laws in detail and give several examples of
their application. In 1940 Mowatt (29) published the results of an
experiment to test the value of these laws. In summary, her subjects
were given a series of drawings and asked to change them in any way
desired to produce what they felt were '"'good" figures from the draw-
ings. She found that, in general, subjects changed drawings in such
a way as to increase, among other things, differentiation, simplicity,
closure, symmetry, good continuation, and occurrence of familiar
forms.

We see then that some of the Gestalt concepts of visual per-
ception agree with some of the factors mentioned in sections 2.1.1
and 2.1.2, for example, the importance of symmetry, similarity, and
the occurrence of familiar forms. Other factors are mentioned by
the Gestaltists which should be examined as possible additions to the
list of readability qualities. Among these are the concepts of prox-
imity, good continuation, and closure, none of which have been con-
sidered in the previous sections.

More recent work on the problem of determining the factors
affecting visual perception has been done by Attneave and Arnoult (3).
They mention that the problem underlying work in the area is that:

"Our most precise knowledge of perception is in those areas which
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have yielded to psychophysical analysis (e.g., the perception of size,
color, and pitch), but there is virtually no psychophysics of shape or
pattern' (3, page 123). And in regard to natural form, ''relatively
few scientists have seriously applied themselves to the problems of
analyzing and describing form; these problems seem to have fallén
into the cracks between sciences, and no general quantitative morph-
ology has ever been developed' (3, page 132). They mention the work
of Thompson (35) as the only major work in the field, but a work
which is limited in its contribution to the identification of psycho-
physical variables of form.

Hake (17) has sumimarized some of the more recent experi-
ments with the factors involved in visual perception. Among these
he mentions experiments in judgement of complexity of figures, in
which results show dependency on the number of turns or angles, and
upon symmetry. He also summarizes experiments on the effects of
redundancy in figures, and concludes that the helpfulness of redund-
ancy in figures depends on the context of the figures. Experiments on
the effects of rotation are also mentioned. In all rotation experiments
reported on, accuracy of figure recognition is impaired by the rota-
tion of a figure. Hake also reports on a large amount of experimenta-
tion with figures tilted toward or away from the observer. To some
degree, it is found that an adjustment in the perception of such a

tilted figure is made for perspective.

36



Comparing Hake's discussion with that of sections 2.1.1 and
2.1.2, we find support for the ideas found in the discussions on the
_number of bends, rotational repetition, and angles between slopes.
However, some question about the effectiveness of symmetry and of
literal repetition is raised by the experiments reported on by Hake.

As a final note, we mention the work of Miller (28), who has
dealt with a problem implicitly mentioned in section 2.1.1, namely,

' number of repetitions is in a lay-

the problem of what a ''countable'
out. In his essay, "The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information," Miller
presents evidence that humans seem to be limited in what he calls
""channel capacity, ' in number estimation ability, and in immediate
memory span, by a number in the range of seven. Although he draws
no conclusions about this '""coincidence,' the results of several ex-
periments are reported on. These experiments suggest that, per-

haps, the answer to the problem posed in section 2.1.1 is seven plus

or minus two.

2.2 MEASUREMENTS AND REALIZATION

Having established some of the qualities which we believe
contribute to readable graph layouts, we would like to be able to
measure how much a particular layout fulfills a particular quality.

Furthermore, we wish to examine the possibilities for the
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realization of these qualities. In other words, can we provide some
method to optimize these qualities in layouts ? Both problems are

st
5

quite complex and require close examination.

2.2.1 Measurements

The ideal measurement of a quality in a layout tells us to what
extent we have optimized the layout for the particular quality. There
are two types of measurements we would like to consider. The first,
which we shall call the '"normalized measurement,' states the extent
to which a quality is fulfilled in a layout, relative to the optimal pos-
sible fulfillment for any layout of the particular underlying graph.
The second, which we shall call the "non-normalized measurement,'’
does not take the optimal case into consideration. This second mea-
surement gives us some idea about how well a quality is fulfilled in a
layout, but is useful only when a comparison of two layouts of the
same graph is made, and the best of the two is to be chosen. It does
not tell the extent to which one layout is better than the other, with
respect to a particular quality.

The normalized measurement of a quality requires that we

have a method to establish the absolute minimum (or maximum) for

>:‘No'ce that in this work we do not examine the question of
internal representation of graphs and layouts although the nature of
this representation has an effect on the efficiency of measurement
and realization techniques, and should eventually be looked into.
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this quality and a particular graph. It seems that for many qualities,
this is a very difficult task. For example, with the minimum number
of intersections, this would mean the establishment of the genus of
the graph. Furthermore, the absolute optimum, given a graph, may
be dependent to some extent on factors which are irrelevant to the
particular quality under consideration. For example, the optimum
may depend on other qualities to which we give priority in layout, if
these qualities conflict with the particular quality under consideration.
Then we must modify the definition of "absolute optimum given a
graph' to "optimum given that the layout will be optimized first for
qualities with higher priority." Thus, a more feasible approach to
measurement is the use of the non-normalized measurement. In
fact, in many optimization procedures, this is all that is necessary
since only the relative maxima (or minima) are sought.

In the following discussion of specific measurements, we will
only consider measurements for those qualities which we feel are
most effective for layout clarity. Thus, measurements will not be
examined for qualities defined in sections 2.1.1 and 2.1.2, which
are not believed to contribute significantly to readability, such as
rotational repetition, balance, and angles between links. The main
aim is to find at least one non-normalized measure for each quality.
Should a normalized measure be found easily for a quality, it will

also be discussed. Even with the simplest measurements as our
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goal, however, we find that there are some qualities which appear
very difficult to quantify. For these more unquantifiable qualities
some of the complicating factors and possible paths toward solution

will be discussed, but no particular measurement will be given.

2.2.1.1 Repetition

The first set of qualities we will consider, those involving
repetition, is probably the most difficult to quantify. Let us first
examine the automatic measurement of the amount of literal repeti-
tion of distinct subparts. The most obvious obstacle here is the
problem of pattern recognition. The complexity of an automated
pattern search and match in a layout is greatly augmented by the fact
that it is unclear at what level to look for patterns. An example will
clarify this. In figure 2-23 we may consider the total figure to con-
tain one pattern, two repetitions of a pattern, four or eight. Most

observers would not have this difficulty; the ambiguity is usually

REpepEge
PReERES

resolved by the viewer. Solving the problem of choosing patterns,

then, requires some insight into the selective process by which
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humans resolve this ambiguity. This is beyond the scope of this
work. We can only suggest that for each viewer there is some
mechanism by which he decides quite quickly that a particular pat-
tern is in some sense maximal and minimal simultaneously and thus
distinguishes it as a pattern to be matched. One factor in this deci-
sion might be that he chooses as patterns those subparts of the lay-
out which are small enough to remember and to be easily reproduced,
but large enough to be separable as a subpart of the layout.

To consider actual non-normalized measurement of the qual-
ity of literal repetition of distinct subparts, however, we must
assume that the patterns of a layout have been chosen and matched,
and then make our measurements on the results. The measurement
is not simple even then. First we consider two obvious measure-
ments, the number of distinct patterns and the number of instances
of each pattern. As we discussed in section 2.1.1, the fewer the
number of different patterns, the better the layout for comprehen-
sion. The number of instances and its effect is more difficult to
judge. Here, we are concerned that the number of instances of each
pattern is countable in the sense discussed in section 2.1.1. Thus
we aren't interested in this number unless it exceeds some threshold
and this threshold is difficult to determine.

To complete the measurement of literal repetition of distinct

subparts, the patterns themselves must be examined. First we

41



consider their size, for, the smaller they are, the easier, in general,
they will be to comprehend. But on a more subtle level, we must
also consider the repetition within each pattern. In other words, if
the pattern itself consists of several instances of some smaller pat-
tern, as in figure 2-24a, it will be simpler to understand than one
which does not, as in figure 2-24b. Furthermore, we must consider

the relationships between patterns.

(a) (b)

Figure 2-24

For example, are two patterns the same except for one element?
Certainly, close relationships between the various patterns helps
comprehension.

Thus we find that a non-normalized measurement of the
amount of literal repetition of distinct subparts consists of several
factors, many of which are, in themselves, somewhat unquantifiable.
To combine all these factors into one measurement would be infea-

sible at this point.
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When we consider other types of repetition, except for the
very specific case of symmetrical repetition, the pattern selection
and matching problem becomes worse. For the problem is compli-
cated by the fact that if we consider non-distinct subparts we are no
longer restricted to having a graph component belong to only one
instance of a pattern; it may belong to several. Furthermore, when
we allow for matching of pattern instances of differing sizes and
orientations, the matching process becomes that much more complex.
Moreover, added to the factors we must measure for literal repeti-
tion of distinct subparts, we must also consider other factors, such
as size difference with similar subparts. It is clear then that finding
measurements for the amounts of other types of repetition in layouts
is even more difficult than for the amount of literal repetition of dis-

tinct subparts.

2.2.1.2 Symmetry

The one exception to the difficulty of measuring repetition
seems to be measuring the amount of symmetrical repetition in a lay-
out when the two repetitious subparts are to account for the whole lay-
out. Symmetrical repetition is a very specific type of repetition (as
defined in section 2.1.1). In the case that the two subparts make up
the whole layout, for each possible axis of symmetry we have one

pattern with two instances, one of which must be the mirror image of
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the other. Therefore, a very straightforward and meaningful mea-
surement of such symmetrical repetition in a layout, is the number
of axes of symmetry in the layout. This measurement corresponds
well with the extent to which such symmetrical repetition contributes
to the clarity of a layout as a whole.

The one complication in automatically measuring the number
of axes of symmetry in a layout is generating these axes. Since
there are an infinite number of possibilities for axes of symmetry,
we must use a method which somehow limits this number. Such a
method has been devised for layouts with at least one link, and is
given below. This method is based on the following observation.
For every axis of symmetry, each line segment in a link fits one of
the following descriptions:

a) the line is on the axis,

b) the line is perpendicularly bisected by the axis, or

c) the line has an image under reflection with respect to the
axis (this image will be called the "mirror image'' of the line with

respect to the axis).

Thus to find all the possible axes of symmetry, we need only
consider for any one line segment in the layout:

1) the axis based on the line itself,

2) the axis which perpendicularly bisects the line, and
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3) any axis with respect to which another line might be the

mirror image of this line.

Each such possible axis is then checked to see whether or
not, in fact, it is a real axis.

We need to describe in more detail the method used to obtain
the third group of possible axes. For the chosen line segment, say
[a,b], we consider, in turn, every other line segment in the graph
which is exactly the same length as the chosen line (since a mirror
image of the line must be the same length as the line itself). For
each such line of equal length, say [c,d], we must examine several
alternatives.

If two ends of the two line segments [a,b] and [c,d] coincide,
then the axis which makes them mirror images must pass through
this coincidental point, and the remaining two ends must be equi-
distant from the axis. Hence, we would obtain the dotted axis in
figure 2-25a. In order for two lines without coinciding endpoints to
be mirror images, there must be two pairs of endpoints (each pair
having one point from each line), for example, (a,c) and (b,d), for
which the respective elements of each pair are equidistant from the
axis of symmetry. Furthermore, the axis must be perpendicular to
both of the lines, say, (a,c) and (b, d), generated by these pairs

(hence, the lines must be parallel), in order that line [a,b] be a
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reflection of [c,d] with respect to the axis. Thus the pair of lines
in figure 2-25b may be mirror images but the pair in figure 2-25c¢
is excluded.

However, it may be possible that two lines may be mirror
images of one another with respect to two different axes, for example,
the pair in figure 2-25d. For this very special case however, it
must be that the two line segments cross one another. We must
remember to check both pairings of endpoints, for, although one
pairing, say, (a,c), (b,d), might not succeed, the second, say,
(a,d), (b,c), may, as in figure 2-25e.

The algorithm to check for these possibilities, given two line
segments [a,b] and [c,d], then proceeds through the seven steps
listed below. It must be emphasized that the success of this algorithm
depends on the fact that the length of [a,b] is equal to that of [c,d]:

1) Check for coinciding endpoints: if any pair of endpoints
of the two line coincide, go to step 2; else, go to step 3.

2) Generate as a possible axis the line which bisects the
angle between the two line segments. This line is determined by the
coinciding endpoints and the midpoint between the remaining two
endpoints. Exit.

3) Check the first pairing of endpoints, (a,c), (b,d): if the
line (a,c) is parallel to the line (b,d), go to step 4; otherwise, the
axis determined by this pairing is not an axis of symmetry; therefore
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(e)

Figure 2-25

47



proceed to step 6, to check the other pairing.

4) Complete the check of the pairing (a,c), (b,d): if the line
determined by the midpoint of (a, ¢) and the midpoint of (b,d) is per-
pendicular to (a,c), generate this line as possible axis and go to
step 5; otherwise, exit.

5) If the lines (a,c) and (b,d) cross, there may be a second
axis of symmetry, therefore, proceed to step 6 to check this; other-
wise, exit.

6) Check the second pairing of endpoints, (a,d), (b,c): if the
line (a,d) is parallel to the line (b,c), go to step 7; otherwise, the
axis determined by this pairing is not an axis of symmetry; therefore,
exit.

7) Complete the check of the pairing (a,d), (b, c): if the line
determined by the midpoint of (a,‘d) and the midpoint of (b, c) is per-
pendicular to (a,d), generate this line as a possible axis of symmetry.

In any case, exit.

The optimal way to implement this algorithm would be to take
as the chosen line, [a,b], a line with the fewest equals in length in
the layout. This would minimize the number of possible axes gener-
ated. Figure 2-26 depicts the generation of possible axes of sym-
metry for a regular hexagon using the above method, where side two
is the chosen line, and where the dotted lines represent possible

axes generated.
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Once the axes of symmetry have thus been generated and

checked, a count may be made to measure this type of symmetrical

repetition in the layout.

2.2.1.3 Other Qualities of Regularity

Let us now consider measures of other qualities categorized

under regularity, aside from the various types of repetition. First

we will attempt to examine measurement of the effect of familiar

figures. The problem here, again, is that although we may measure
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certain quantities, the significance of these measurements is in
question. For example, although we may measure the number of
equilateral triangles that appear in a layout, this number may have
nothing to do with how we perceive the layout. Compare figures
2-27a and b, for example: in 2-27a triangle recognition is key

in aiding comprehension, whereas, in 2-27b, it is not. Thus we have

a measurable quantity, but it does not reveal the information desired.

(a) (b)
Figure 2-27

Although it detects the presence of familiar figures, it does not indi-
cate to what extent they aid comprehension. Ideally we would like
some means to pin down whether or not a familiar figure significantly
determines the organization for comprehension of a layout, for
example, the triangle in figure 2-27a and the hexagon in figure 2-27b.
But, again, we are dealing with an extremely complex task involving
the understanding of the method used by humans in resolving visual
ambiguities to obtain an organization for comprehension, and this is
beyond the scope of this work.

Moving on to the next quality, size and distance consistency
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for single segment links, we find much more hope for significant
measurement. As discussed in section 2.1.1, there are two different
approaches to consistency. The first, consistency of link scale (link
length consistency), might be examined by looking at the distribution
of link lengths in the layout. The problem of measurement is com-
plicated by the fact that it is not always possible to obtain total con-
sistency in the layout for a graph. For example, it is not possible to
draw all diagonals in a regular polygon the same length as the sides.
The ideal measurement would first consider the minimal number of
different lengths required for a particular underlying graph (for
example, the complete graph on five vertices requires two lengths).
It would then determine how closely the various link lengths corre-
sponded to this ideal number. This measurement can be made
clearer by an example.

Consider the layout in figure 2-28a. The underlying graph
can be drawn with a minimum of two different lengths. Both figures
2-28a and b meet this requirement equally. However, figure 2-28c
does not, and thus is not as consistent as possible. The layout in
2-28d, however, deviates even more from the minimum than 2-28c.
Distributions of link lengths for these various layouts are shown in
figure 2-29. Given that we know the minimum number of lengths for
the graph, then, we might measure the deviation from this minimum

in a layout by trying to answer the following questions: How close is
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the number of different lengths from the minimum? If n is the
minimum number of lengths for the graph, does the length distribu-
tion form n length clusters? What are the ranges in these clusters ?

(For example, compare figures 2-30a and b and their length distribu-

tions.)
(a) (b) (c) (d)
Figure 2-28
6 6
= 4
2 2 2 2
L L L LR Tr1rriri vl
1/2 1 1/2 1 1/2 1 1/2 1
(2) (b) (c) (d)
Figure 2-29
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Figure 2-30

Practically speaking, however, several problems are inher-
ent in such measurements. Foremost is the problem of obtaining the
minimum number of lengths for an arbitrary graph.* There is also
a question of validity in our reading of the length distribution. Sup-
pose that length clusters overlap, or that deviations are such that

there are no clusters. We cannot really get from the distributions

any information which reveals which link belongs to which length

*®
It is clear, however, that for a complete graph on n nodes,
the minimum N, is such that:

{ 1+ (n-2)/2 n even

N I (@532 ol

n

and thus that for any graph on n nodes, the minimum is less than or
equal to Np,. This result is obtained by counting the number of lengths
required in a regular polygon on n nodes.
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cluster. In fact, the same link in two different optimal layouts can
belong to two different length clusters (for example, link e in fig-
ures 2-28a and b). Thus the problem of link scale consistency mea-
surement turns out to be extremely complex, and should be examined
further. However, for the present, we will use a simple count of
different link lengths as a non-normalized measurement.

For the second approach towards examining size and distance
consistency, fidelity, Baecker has designed an efficient and sensitive
measurement. Several measurements were tried, and it was found
that the most effective measurement was one which measured only the
number of violations of the fidelity constraint, and which ignored any
consideration of scale and distance deviation. The fidelity constraint
is that for each link and endpoint pair, ¥ no node with graph distance
two or greater from that endpoint may be closer to the endpoint than
the length of that link. The measurement then checks each link and
endpoint pair in the layout and counts the number of violations of this
constraint. The sum is the measurement of the infidelity of a layout.

Baecker points out that the minimum value of the infidelity
measurement is not always zero. For example, he proves that the
graph of figure 2-31 has a non-zero minimum fidelity. He does not

concern himself with obtaining the absolute minimum for a graph,

e

=PAgain, here we are dealing with single segment links.
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Figure 2-31

however, and finds it sufficient to observe the change in this non-

normalized infidelity measurement as layouts are simplified.

2.2.1.4 Directional Consistency

The next set of measurements we consider are those involving
the qualities categorized under directionality. The first quality
seems the most difficult to measure, that of directional consistency
in layouts. When we consider the cases in which the consistency
criterion is met by the existence of a predominant direction in which
arrows point (we call this the linear case), there is no problem with
measurement. In flow and network diagrams, for example, to mea-
sure consistency we might measure the proportion of total link length
contributing to the predominant direction. The predominant direction

of the layout is determined by the direction of the vector sum of the

ES

links, and the magnitude of the predominant direction, by the magni-

tude of this vector sum. The proportion of total link length

'In the following discussion of directional consistency, when-
ever we are dealing with links with more than one line segment, each
link segment should be treated as a separate link with direction
derived from that of the whole link.
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contributing to this predominant direction, and thus our measurement

of linear directional consistency is:

v _|

D, lu.l

L

where Iuil is the length of the ith

link and where IVSI is the
length of the vector sum of all the links. Note that 0 <L <1, so that
in the totally consistent case of figure 2-32a, L =1, whereas with the

less consisient 2-32b, L =.8, and with the totally non-linear case of

2-32¢, fL=0.
1
1 1
1 L 1 1 1
& - >¢ >
—————— > —,———— .
v 1 =3 |v | =2+42+2 lv l=0
L=3/3=1 L=(2N2+2)/6~ .8 L=0/6=
(a) (b) (c)
Figure 2-32

However, we would also like to find measurements for the
cases in which predominant direction cannot be expressed in terms of

a vector sum, the cases in which the predominant direction is radial
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or circular as in figure 2-10. We note that in these cases, often
vector sums tend to be near zero. However, we would like to find
directional consistency measurements, analogous to that for linear
consistency, for these cases. Instead of using the vector sum, then,
we must find an analogous measure which sums the contributions of
each of the links to radial or circular orientation with respect to a
center.

Let us first consider the measurement for outward radial
orientation from some fixed center. For each link, we include as
the magnitude of its contribution to outward radiality its projection
on the radius which runs from the fixed center through the starting
node of the link. For example, in figure 2-33 links a and b have as
their contribution their total lengths, since both lie on radii from the
fixed center, c, and both are directed outward from c. Link d,
however, has a contribution of e, since it does not lie on a radius.
The length e may be determined by subtracting the distance between
the end node of d and the center, c, from the distance between the
start node of d and the center, c. Link f contributes the negative of
its length to outward radiality, since although it lies on a radius, it
is directed inward towards c. Likewise, link g contributes the nega-
tive of the quantity h; the negative value is the result of the same
calculation used to find the length e. Thus this calculation also

reflects link direction. In fact, if we apply this calculation to each
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Figure 2-33

link, we obtain the outward radial contribution for that link, so that

we may obtain the desired sum, o analogous to IVS| as:

oo =z (d(center, endpoint.l)- d(center, startpointi))
i

where 1 ranges over the set of link segments of the layout, and thus

the measurement of outward radial orientation, Ro

00
R =T —
Z lu, |
1

Some examples are found in figure 2-34. We note that the range for
the measurement R0 is -1 to 1. This requires some explanation.
In the case of measuring linearity using VS ; |VS| is always posi-
tive or zero. However, were we to examine the magnitude of the
vector with direction opposite to VS we would find it to be negative,

but of the same size. When radiality is measured the ''vector"
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opposite to the radially outward vector, g0 is the radially inward
vector, Ei . Unlike the linear case, the stronger of these two oppo-
site directions is not necessarily selected in the process of measure-
ment. The measurement Ro assumes that the outward direction
predominates. Thus if Ro is negative, the wrong direction has been
chosen as the predominant direction; we should have chosen the
radially inward vector as the predominant one, and measured R, ,
radially inward orientation, instead of Ro. The magnitudes of Efi
and 30 are the same, as with VS and its opposite, and thus we may
express Ri as —Ro (see figure 2-34).

One further problem should be mentioned concerning this
measurement. With the linearity measurement, L. was found to be
very small in the case that directions diverged considerably; in other
words, directions seemed to cancel each other out. There is an
analogous effect with Ro (and Ri)’ where radially inward contribu-

tions tend to cancel out radially outward contributions. But there is
also another factor which affects the magnitude of Ro (and Ri)’ the
total amount of radiality. For example, if links were completely
circular around a center, as in figure 2-34d both Ro and R,1 would
be zero. In the linear case the analogous effect by itself is not as
marked, for the predominant direction, that of Vs’ is determined by
all the links, whereas, in the radial case, the predominant direction

is predetermined without reference to the links. This suggests that
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i i
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(d) (e)
Figure 2-34

a simple measurement of radiality, regardless of direction, might be

of interest also. Such a measurement is:

o Zl.uil

where:

i =2 ‘d(center, endpointi)- d(center, startpointi)l
i
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This measurement sums contributions to radiality in either direction,
inward or outward (see figure 2-34).

When dealing with analogous measurements for circularity
with respect to a fixed center, c, the same phenomenon is found.
First we will look at the magnitude of the ''vector' sum of circular
movement with respect to one direction (clockwise or counterclock-
wise), as determined by the sum of the contribution of each link. The
contribution of a link is determined from its midpoint, m, as follows.
Draw the tangent at the point m to the circle with center ¢, which
passes through the point m. The magnitude, n, of the contribution
is then the length, n, of the projection of the link onto this tangent
line (see figure 2-35). Both sign and magnitude may be calculated by
using | u | cos 8, where |u | is the length of the link, and 6 is the
angle between the link vector and a vector on the tangent line oriented
in the direction of the circular measurement (i.e. either clockwise

or counterclockwise) (see figure 2-36).

— tangent
at m

Figure 2-35
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Figure 2-36
Summing these contributions, we obtain the measurement,
o (clockwise) or o _ (counterclockwise), depending on the direc-
c c

tion of the tangent vectors used. Thus as measurements of directed

circularity we have:

As for Ro and Ri’ C_ and C_ range between -1 and 1, and

C_ =-C_ for any layout. Analogous problems arise with C_ and

C_ as with Ro and R,1 resulting from the effects of cancelling and
circularity. Thus we might also be interested in obtaining a measure-
ment for undirected circularity, C, analogous to R. To do this we

simply disregard sign in measuring the projections onto the tangents,

to obtain:
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2 lu,l

C

where:
0. =§i: |p.i| cos Gi

and where 6. is the smaller angle between the link and the tangent.
1

Some examples are given in figure 2-37.

2 2

2 Ei’il 2 2 1{ lzl 2
1 1
2 v

c_=1 C_.=5/ll
cl=-1 c_ =-5/11
Cc =1 c =1

(b) (c)

C—a=1/3 C—Ozo C—azo
Ch=-1/3 C‘_=0 C‘_=0
Cc =1/3 C =1/3 C =0
(d) (e) (f)
Figure 2-37

63



2.2.1.5 Other Qualities of Directionality

Measurement 'of the remainder of the qualities categorized
under directionality is quite straightforward. For example, as non-
normalized measurements for the number of bends, total link length,
and the number of intersections, we may simply use these numbers.
It is interesting to note that Fary (14) has proven that for planar
graphs, with no self-loops or parallel links (two links connecting the
same two nodes), there always exists a layout which has no bends,
or equivalently, one in which all links are represented by single line
segments.

The question of a normalized measurement for the number of
intersections involves a well-known problem in graph theory, that of
determining the genus of a graph. This problem has been examined
by several people including Anger (2). A modified version of the
problem, that of determining whether or not a given graph is planar,
has also been of interest in graph theory, and has been examined by
Even et al. (13) among others. Anger's method to find the genus of
a graph constructs layouts with all possible permutations of link
orders around the nodes. This produces all possible representations
of a graph with respect to genus. The genus of each such layout is
examined, and the layout with the smallest genus determines that of
the graph. The method may be quite time consuming, and Anger
mentions several ways in which it may be made more efficient. Thus,
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if we wished to find the value of the normalized measurement of
intersections in a layout, it would first be necessary to determine
the genus of the underlying graph using a method such as Anger's.
To answer the question of whether or not the genus is zero, we need
only use an algorithm such as Even's. Even's algorithm is more
direct and less time consuming than one which determines genus.
And it is constructive in that the results of the check can be used to
generate a planar layout, if the graph is planar.

There is an additional problem in measuring the number of
intersections. As mentioned in section 2.1. 2, it may be the case
that a smaller number of intersections is not necessarily best. Con-
sidering this, we would ideally like to measure not the number of
intersections, but how much the intersections present add or detract
from directionality in the layout. Such a measurement is very diffi-
cult to make, however. One indirect approach might be to make the
judgment based on the amount of complication which develops when
the intersection or set of intersections is removed. We might exam-
ine the increase in link length and number of bends in this case. For
example, when we eliminated the intersections in figure 2-15b, the
result, 2-15¢c, had four more bends and some increase in link length.
Here, in order to measure how much the intersection adds or detracts
from directionality, we are measuring how much other complication

we avoid by allowing the intersection, keeping everything else
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constant. This seems a feasible approach to the measurement in a
local sense. However, when we consider such a measurement with-
out keeping other layout factors constant, such as node position, the
measurement would become extremely difficult to devise.

Several measurements may be developed to quantify the
amount of parallelism or the number of different link segment slopes
in a layout. We may, on the simplest level, consider counting the
number of different slopes. Or, we may also take the number of link
segments into account in the measurement, and use a measurement
such as:

number of slopes (= NS)

number of link segments ( :Nl)

Here N ranges between 1, in which case every link segment has a
different slope, and l/N1 , in which case all link segments are
parallel. We will not consider measuring parallelism separately,
since, in a sense it is reflected adequately in the measurement N.
When NS is small with respect to a given Nl’ this implies that the
parallelism is large.

An interesting question to ask is how the number of link slopes
relates to the phenomenon of directional consistency, and furthermore,
should we consider a measurement of the number of slopes similar to

the measurements used for directional consistency. In measuring
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directional consistency we are trying to determine how well the vari-
ous links combine to give a total direction to the layout. In examining
the number of slopes, on the other hand, we wish to determine how
much divergence (in a discrete sense) there is between link directions;
it is not a measurement of total direction, but of relationships between
the link segments. Thus, in measuring the latter, we do not want to
take total direction into account, but only whether or not link direc-
tions agree.

Finally, we would like to obtain a measurement of horizontal-
vertical link segment orientation in a layout. There are two senses
in which we may measure this, corresponding to the two interpreta-
tions of link slope just discussed. In the first case, using a vector
type analysis, we would be asking what contribution each link gives to
both horizontal and vertical movement in either direction. Since these
are perpendicular directions, this sum accounts for all orientation,
and the answer is meaningless. In the second case, we would simply
examine the ratio of the number of strictly horizontal and vertical

*®
segments, N, , to the total number of link segments, NS. This

hv

approach is preferable, not only because it gives a meaningful result,

but also because, again, we are interested in a discrete relationship,

%
Or, we might measure the ratio of total horizontal and verti-

cal length to total length. This gives the percent of total link length
which is horizontally or vertically oriented.
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that between the links and the horizontal and vertical axes. In other
words, in this measurement, we are not concerned with how close a
link is from being horizontal or vertical, but whether or not it actu-

ally has one of these orientations.

2.2.2 Realization

In dealing with the problem of realization in graph layouts of
the qualities discussed above, there are two main approaches which
might be taken. The first, which we shall call the constructive
approach, includes realization techniques which aim at providing
layouts with the absolute optimum for the qualities under considera-
tion. With this approach a layout is developed from the graph, with-
out reference to any previous layout for the graph, but based only on
the criterion that a quality or set of qualities chosen be optimized.

The second approach, called the modifying approach, ¥ aims
at realizing the local optimum for the qualities being considered,
given an already existing layout for the graph. Methods developed
with this approach apply to a given layout in order to improve that
layout as much as possible with respect to a given quality, while

changing the layout as little as possible. This constraint that as

"This terminology should not be confused with the ideas pre-
sented in chapter 4. A '"modifying algorithm'' applies to a layout in
a global sense, whereas the ""modified layout problem' (as presented
in chapter 4) deals with layouts in a very local sense.

68



little as possible be changed with the modifying approach is based on
the fact that with these algorithms we want to preserve as much of
the original layout'as we can while optimizing for a quality.

Although the constructive approach is initially more appealing
than the modifying approach, since the results promise to be better,
there are many problems which accompany it. In order to provide
the greatest amount of flexibility of layout, the constructive approach
requires that algorithms use no reference to any previous layout.

The problem here is that given a graph and a set of layout qualities

to be optimized there may be several layouts for this graph which
optimize this set of qualities. In other words, with the constructive
approach, part of the resulting layout may be arbitrary. For
example, in figure 2-38, we see several layouts for one graph which
meet the requirement of minimal number of different link lengths
(link length consistency). Thus this link length consistency require-
ment is not enough to determine, for the graph underlying figure 2- 38,
which layout a constructive algorithm should produce, and an arbitrary
decision must be made. With the modifying approach, no arbitrary
layout decisions are made; as mentioned above the implication behind
this approach is that, given a layout, as little as possible in that lay-

out should be changed in optimizing for a quality.
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Figure 2-38

A second problem to consider with the constructive approach is
the problem of combination of criteria. We can apply a constructive
realization algorithm only once to a graph to obtain a layout, since it
must always be applied to a graph, and not to another layout. A
second application obliterates the results of a first application. And
if we wish to optimize.for more than one criterion, we must combine
the respective constructive realization algorithms into one. The
difficulties then begin to multiply, for, first of all, this means that
we must obtain a different algorithm for each combination of criteria,
and second, it may be the case that for a particular graph, two
criteria may conflict. For example, in figure 2-12a, we optimize
the layout for minimal number of intersections, and in 2-12b for
minimal link length and number of bends. We cannot, for this under-
lying graph, have all three measurements be at absolute minima

3

simultaneously. " This implies that we must assign priorities to the

*This problem of interaction and trade- offs between qualities,
where they conflict in layout, is an important problem in itself, and
should be looked into further. '
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criteria in a constructive realization algorithm. The problem here,
however, is that we often cannot know, before experimenting with
several layouts, what criteria should be given priority and how one
criterion affects another. Furthermore, the addition of choices of
priorities would increase the complexity of these algorithms a great
deal.

With the modifying approach, we do not have these problems,
since these algorithms apply to already existing layouts. We need
only consider one algorithm for each quality, and apply these algor-
ithms to the layout one at a time. This puts the concept of algorithm
definition at a much more feasible level. There is also an advantage
in that we may examine the results of optimizing for a particular
quality more closely, and observe how it affects other qualities in the
layout.

This modifying approach also provides the possibility of a
somewhat interactive environment in which, perhaps, a user may try
several different orderings and combinations of qualities for optimiza-
tion, to find the ones which are most appropriate for his particular
graph. The modifying approach also seems much more reasonable
in that it provides a good environment for testing more than one
method to optimize for a given quality. This ability to experiment
which is facilitated by such an environment is a very important con-

sideration at this point in our research. For example, we might
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wish to experiment with the extent to which we allow an algorithm to
change a layout for optimization purposes.

To complete the comparison of these two approaches, we must
also take into account the difficulty mentioned in section 2.2.1 in
measuring the absolute optimum for many of the qualities considered
given a graph. Since a realization of such an optimum is the inherent
goal of constructive realization algorithms, they must be able to find
this optimum. With the modifying approach this problem is avoided.
Essentially we ask that these algorithms do the best they can in opti-
mizing, while limiting the power of the particular algorithm to change
a layout. Thus, we are not concerned with what the absolute optimum
may be, but what the local optimum is, given certain constraints.

For these reasons the modifying approach is the one taken in
the discussion of realization algorithms which follows, as well as in
the experimental MOD system described in the next section. For a
few qualities, however, there are some constructive algorithms
which are of interest. These will be mentioned.

There are many difficulties in the development of realization
algorithms for the various qualities discussed in section 2.1, as was
seen in the discussion of measurements for these qualities. Again,
where we cannot actually provide an algorithm for realization of a
specific quality, we will attempt to point out some of the problems

involved.
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2.2.2.1 Repetition

As in the case of measurement, the first quality we will con-
sider, repetition, is the most difficult to deal with. Here the aim is
to find a method for changing a layout so that more repetition occurs
in the layout. The complication in dealing with repetition, as dis-
cussed in section 2.2.1.1, is the discovery of matching patterns in
the layout and the decision as to the level at which to select patterns.
With realization, however, the problem is even worse than it is with
measurement since we are not looking for pattern matches which
presently exist in the layouts, but for possibilities of creating them.
Were we to try to develop a modifying algorithm, this would perhaps
mean identifying "near' matches and making them ''perfect' matches.
Finding a constructive algorithm would involve identifying structural
matches in the graph and realizing them in layouts. Both tasks seem
infeasible at this point.

However, since we have chosen to work in a somewhat inter-
active environment, a compromise is possible. The most difficult
part of the task to automate is the identification of possible matches.
The most tedious part for the user is the realization of the repetition.
Thus, if we break the task up and allow the user to specify the sub-
parts of the layout to be matched, and allow a modifying algorithm to
actually make the subparts repetitious, we have a reasonable com-

promise. With such an approach to the realization of repetition there
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are several things to consider. Foremost is the question of node-
to-node mapping from one subpart onto another. An example can
best explain this. Suppose in the layout of figure 2-39a that the user
specified, with appropriate enclosures, the two subparts to be
matched (these need not be distinct). This is not a complete specifi-
cation since he has not explicitly identified nodes. It seems quite
clear, however, that he means that node a is to be mapped onto a’
etc., if he wishes to make the two patterns repetitions of one another
as in figure 2-39b. But suppose he wishes to make them symmetric
images of one another with respect to an axis between them. Then
the mapping would be different, as indicated in 2-39c. Thus the user
should specify in which sense (literal or symmetrical) he wishes to
have the repetition realized, but he may leave to the realization

algorithm the task of making the node-to-node map given this

a b,a.’ b’ a blb’ a’
c d,c’ d’ alq’ ,
& @
(a) (b) (c)
Figure 2-39

74



information. In fact, with either literal or symmetrical repetition,
there may be more than one mapping which will suffice. This will be
brought out later in the discussion.

Another question of importance is whether, in changing the lay-
out to produce repetitious figures, we should use one of the specified
subparts as a pattern and require that the other conform to it, or,
whether we should find some compromise between the two to which
we make both subparts conform. If we allowed only the first alterna-
tive, and chose subpart A in figure 2-39a as the fixed pattern, we
could not make subpart B a literal repetition of it, as can be seen in
the figure. If we followed the other alternative, we would have a
problem when we wanted to make several subparts the same by using
this operation which applies to only two subparts at a time. Thus,
the success of the manner in which we realize repetition depends on
what the user desires. It should thus be left to him to choose between
the two methods according to what he has in mind.

In summary, then, we have sketched the following require-
ments for our repetition algorithm. Given, by the user:

(2) two layout subparts (designated in some way, for example,
by enclosure),

(b) whether we want to make the subparts literal or symmetri-

cal repetitions of one another, and
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(c) whether the first subpart designated may be modified, per-
form the following:

(1) Find isomorphic node-to-node maps between the subparts,
which are appropriate to the choice in option (b). Establish the axis
of symmetry for each mapping, when symmetrical repetition is
requested.

(2) Dependent on the choice in option (c), attempt to make the
two subparts either literal or symmetrical repetitions of one another
by either:

(2a) changing the second specified subpart to conform to
the first, or
(2b) finding an intermediate form between the two subparts

and changing both to this new form.

In some cases, it is obvious that literal or symmetrical repeti-
tion is not obtainable; in these cases the algorithm should terminate
without making any changes. For example, if we were to require that
subparts A and B of figure 2-39a be made literal repetitions of one
another without changing subpart A, the algorithm should fail. In
other cases, it may be that the only solution is one in which the two
subparts overlap; we also want the algorithm to fail in these cases.

Such an algorithm has been written, and, due to its length, has

been placed in Appendix 2, rather than in the text. The appendix
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includes the algorithm, along with a detailed explanation and some
examples of its application.

Several problems remain with the algorithm as stated in the
appendix, and should be looked into further. The foremost problem
is prevention of overlap of two nodes in the resultant layout. The
algorithm does not necessarily prevent this. In fact, it is possible
that in moving nodes to produce literal or symmetrical repetition,
with certain layouts, two nodes might be placed at the same location.
The algorithm inits present form, contains no checks for this,
although, a more detailed version might include such checks.

Another problem is that we have included no provision for
similar and rotational repetition. It seems in cases like that of fig-
ure 2-39a, were we to require that B be made a literal repetition of
A without moving A, the result, since literal repetition is not pos-
sible, should be similar repetition, if this were possible. Similar
repetition has a natural place in such an algorithm as a default condi-
tion when literal repetition cannot be accomplished. Again a later
version of the algorithm might include a provision for similar repeti-
tion in this form. Despite these problems, the algorithm in its
present form, reflects a feasible approach to realizing repetition in

layouts.
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2.2.2.2 Familar Figures

The next problem to consider is the realization of familiar fig-
ures in layouts. Again the problem is that it is difficult to recognize
automatically when a familiar figure, such as an equilateral triangle,
is possible and appropriate in a layout. Once this has been established,
it is quite easy to realize the figure. Thus, an approach similar to
that used for repetition might be appropriate, where the user indicates
the subpart of the layout he would like to have appear as a regular
figure, and an algorithm performs the mechanics to produce it. For
example, the user might indicate some simple cycle of the layout, and
the algorithm would move the nodes of the cycle minimally to obtain
a regular polygon. The one exception to the problem of recognition
of familiar figure possibilities seems to be recognition of horizontal
and vertical lines of nodes in a figure. It is quite simple to detect when
a series of nodes in a layout is intended to fall in a straight horizontal
or vertical line, and to modify the layout so that the nodes are aligned
in this way. Such an algorithm has been implemented in the MOD sys-

tem and is described in section 2.3.3 under the pretty command.

2.2.2.3 Link Length Consistency

We would now like to find a method to optimize link length con-
sistency in layouts. Using the number of different lengths in a layout

as a measurement of length consistency, one such procedure might be
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as follows. For each nodes (and bend point) in turn find a new posi-
tion for the node (leaving other nodes fixed), which minimizes the
number of lengths. Continue until one complete pass through the
nodes yields no improvement in the measurement.

The heart of the algorithm is the determination of a position
for the node under consideration which minimizes the number of link
lengths. The constraint is implied in this step that we move the node
as little as possible, in order that the layout is disrupted minimally.
Suppose thg.node under consideration, say a, is of degree n (i.e.,
has n links attached to it). And suppose that of the links not attached

! . We

to a in the layout, there are m different lengths, Zl, -
m

will try to find a position for the node a, such that each of the n
links is equal to one of the m lengths. There may be several such
positions. To find these positions, we first try assigning the n
links so that they all will be equal to the same one of the m lengths,
and then derive a position for the node a which satisfies this assign-
ment. If no such position can be found, we try assignments which
use only two of the m lengths; if this fails, try three, and so on.
Once we find a successful assignment and position using p of the m
lengths, the process is terminated for the node under consideration.
An assignment is considered to fail if the set of equations
described below has no solution. Let x,y be the new position to be

derived for node a. Let XY, (i=1,2,..., n) be the position of the
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node at the other end of the ith link adjacent to a, and let J&i
(i=1,..., n) be the length (one of m) assigned to link i. Then we
must find a value for x and y which satisfies each equation in the

set:

{J(xi-x)2+ (y,-y)% =4 (i=1,2,...,m)

In the case that n=1, the new position, x,y of node a will be on the
line ((x, y'), (Xl’ yl) ), where x’,y’ is the old position of node a.
Where the position x,y is not uniquely determined by this set of
equations, ;:he position closest to x/, y' is taken as the solution. Thus,
an assignment fails if no position can be found for node a which allows
links 1,..., n to have lengths ¢ TRREE J&n , respectively.

It is possible that if we are using p of the m lengths there
might be several assignments which can be satisfied. We make a se-
lection among these by choosing that assignment which yields the new
x,y closest to the old position x’,y’. The number of different assign-

ments of m lengths to the n links where we want to use p of the

m lengths is given by N n.om’ 28 follows:

where:
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L— (5)
p,n,m B » I, I P

An example will help to explain the procedure better. Suppose
node a with position x’,y’ has three links adjacent to it, and that
there are three lengths in the remainder of the layout, say !,1, !,2,
and £ 3" We first try the assignments for which p=1. There will be

Nl, 3,3 = 3 of these:
Assignment
Li
il (i) (ii) (iii)
1 !,1 1.2 !,3
2 ll LZ 1,3
3 ll 1,2 1,3

For each of the three assignments (i=1, 2, 3) we must solve the

equations:

{Ju%;>qz+(yk-yﬂ==zi;(k=1,2,3n

Suppose, then, we obtained solutions for all of these, say respectively
1 1 a2 3 3 :
(x,y ) (x,vy ), and (x, y ). We would then choose the assignment

i for which:

Vi - 52+ (y'- yi)2
was minimal, and go on to the next node.
If, on the other hand, no solution was found to any of the equa-

tions for p=1, we would have to try the N = 18 assignments for

2 85,5
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which p=2, proceeding in the same way we did for p=1, to find the
solution which changes the position of node a the least. If we pro-
ceed through p =Min(m,n) without finding any solutions, we leave
the node at its original position and move on to the next node.

For each node considered, if at least one of the lengths of its
adjacent links was unequal to any one of the m lengths of the remain-
ing links, and if a successful assignment has been found for this node,
then we have improved the measurement of consistency, since the
total number of link lengths will be decreased to m. In any other
case, in other words, in the case that all the adjacent links originally
had one of the m lengths, or, in the case that no successful assign-
ment was found for thé node, the measure of link length consistency
remains the same.

This algorithm has not yet been implemented or experimented
with. Thus, its performance and its pitfalls are not known. For
example, perhaps we should also allow assignment of only some of
the n links for a node, leaving some fixed as they are. Or perhaps,
when the n links are already of equal length, we should not change
them. One obvious problem is that for large n or m the number
of trials for a given p becomes very large. Figure 2-40 depicts an
example of the application of the algorithm as it stands. Figure 2-41
shows a table of the steps performed for this layout. The checked

column indicates the one assignment chosen from those of the
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£i.3,1.5)

(0,0)

(iii)

Figure 2-40

which are successful.
p,n, m
An alternative approach to the problem of realizing link length
consistency has been examined, and an algorithm has been sketched

out in Appendix 3. This approach is more of a constructive algorithm

(as defined in section 2. 2. 2) than the one given above, although it
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Step Node

(1)

(2)

(e)

(4)

(5)

(6)

(7)

a=(1l.3, 1.5)

figure 2-44 i

b = (4, 0)

figure 2-44 ii

c =(2.7, -1.5)

figure 2-44 ii

d = (0, 0)

figure 2-44 iii

a =(2, 2.3)

figure 2-44 iii

b = (4, 0)

figure 2-44 iii

c =(2, -2.3)

figure 2-44 iii

'S
15

Assignments
a-b 4 3
a-d 4 3

X 2 2

3o 2a3

g v
b-a 3
b-d 3
b-c 3

b4 .

] no solution

Yy
c-b 4 3
c-d 4 3

b4 2 2

3.5 -2.3

y v
d-a 3
d-b 3
d-c 3

* } no solution

y
a-b 4 3
a-d 4 3

x 2 2

3.5 2.3

4 v
b-a 3
b-d 3
b-c 3

b4 .

] no solution

Yy
c-b 4 3
c-d 4 3

x 2 2

y =3.5 -2.3

v
Figure 2-41
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Resultant

Position
x =2
y=2.3
x =4
y=0
x =2
y = -2.3
x =0
vl
x =2
V=23
x =4
=0
x =2
y =-2.3

Consist-
ency




uses some of the original layout, and so should be classified as a
modifying algorithm. The idea behind it is to break the layout up into
cycles of minimal length, and to generate regular polygons for these
cycles wherever possible. It is guaranteed that the resultant layout
for n nodes will contain not more than Nn g lengths. The algorithm
sketched is quite complex and several problems still remain in its

design.

'2.2.2.4 Fidelity

In his paper Baecker has sketched a feasible approach to realiza-
tion of higher fidelity in a layout. In summary, given a layout, he
suggests four heuristics, the application of which should improve
fidelity:

1) Isolate "maximal dangling trees, " those non-cyclic components
obtained by separating the graph only at articulation points#<>=< which lie
on simple cycles.

2) Move nodes of large degree in the direction of the vector sum

of the links from this node, taken in the direction away from this node.

%
ppsiy, Nn ’ { 1 +(n-2)/2 n even

1 +(n-3)/2 n odd
where n 1is the number of nodes and bend points.

ke
A node in a graph is called an articulation point if, by deleting
the links adjacent to this node, the remainder of the graph is sepa-
rated into two or more components.
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3) Reduce intersections by local node transversal of links;
for example, if all the links from one node cross some given link,
move the node to the other side of the given link.

4) Identify interesting subpatterns and manipulate them.

This is the least specific of the heuristics, and implies manipulations
such as recognizing poorly placed whole subgraphs and repositioning

them.

Baecker has derived these heuristics from observing the
manual manipulation of layout, and finds them quite successful in
improving fidelity. He does not, however, attempt to put them in the
form of an algorithm, although this might easily be done for the first

three heuristics.

2.2.2.5 Directional Consistency

We will now move on to a discussion of the realization of
directional consistency for directed layouts. First we consider rea-
lization of linear directional consistency as discussed in section
2,2.1,4, A direct approach to the improvement of the measurement
of linear directional consistency, L, might be accomplished by con-
tinuously alternating the following two operations; first, determine
the most deviant link in the current layout, and, second, rotate this
link so that its direction is less deviant, thus obtaining a new ''current'

layout. A repetition of the following three steps would accomplish this:

86



1) Find the direction of the vector sum in the layout; if
| Vs| = 0 choose the direction of any one of the links.

2) Find the link not yet tried for this iteration for which the
product of the link length times the angle at which it deviates from
the direction chosen in step 1, is the largest, and call this link i.

If all links have been tried, the realization process is terminated.

3) Using the center point of link i as a pivotal point, and
keeping its length constant, rotate the link and its two endpoints until
it lies in the same direction as the direction chosen in step 1. If this
new position causes nodes to overlap over other nodes or links, or,
if the resultant L 1is not less than the previous L, return the link to
its previous position and go back to step 2; otherwise the new posi-

tion is kept, and the iteration is complete.

With each iteration through these three steps either we obtain
an improvement in the measurement L, or the iteration process
terminates. We note that the overlap condition must always be
checked since an optimal solution in some cases might be for some
links to lie on top of others. For example, with the layout in figure
2-42i an L of one would be obtained if the links on the upper part of
the layout and the links on the lower part of the layout were all placed
along the line through the center of the layout, in which case there

would be overlap.
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There are several problems inherent in this method which
must be explored. First is the problem of determining when a suffi-
cient number of iterations have been performed. Perhaps, if we
measure L after each iteration, we might terminate the iteration
process when improvement begins to grow small, although we have
no guarantee that the improvement is a monotonically decreasing
function. Furthermore, we do not know how to define '"'small, "

Second is the question of whether or not the optimal new posi-
tion for a link i, chosen in step 2 of an iteration, is in the direction
chosen in step 1. Perhaps some intermediate position between the
old and the new direction might be more optimal and should be used.
In an actual implementation of the algorithm, this possibility should
definitely be explored.

A third question is whether, in fact, the most deviant link
should be the one adjusted first in an iteration. Certainly, reorient-
ing this link in the direction of VS adds to the linear directional
consistency, L. However, other links, namely those attached to the
endpoints of the link i are also affected, and their modification may
detract from L. Considering this, perhaps, in step 3 we should,
instead, choose first the link whose movement would cause the great-
est net improvement in L, Thus we would have to perform step 3 for
each link in order to make our decision in step 2, choosing to move

that link with the greatest net increase in L for this iteration. At
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this point this approach seems quite time consuming. The relative
performance both in time and in quality of results of this modified
method, compared to the one originally described, might be judged
best by a comparison of their performance upon implementation.

One further possibility should be mentic‘med, that of allowing
an iteration to decrease L, in anticipation of a later net increase.
In other words, by restricting ourselves only to modifications which
increase L, we may be restricting the possibility of improvement to
a very localized range. Whereas, perhaps, were we to allow L to
be decreased in an iteration (and backtrack upon failure to obtain a
net increase after a given number of iterations), our final results
might be improved. This possibility should be examined further.

An example of the method first described, using four itera-
tions, is shown in figure 2-42. The links chosen as link i in step 2
are indicated with x's, and the direction of the vector, Vs, is indi-
cated by the arrow under each layout.

A similar tack might be taken with the realization of radial
and circular directional consistency. However, in these cases
step 1 need not be performed, since the direction to be maximized is
always predetermined, in other words, radially outward or inward,
or circularly clockwise or counterclockwise. It is also necessary
that, for the complete series of iterations, a fixed center be chosen

with respect to which radial or circular movement is to be maximized.
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e— T

1. % .78 1.8 .78 L= .82
(i) (ii) (iii)
Li= .85 1i=.,9)

(iv) (v)

Figure 2-42

For example, optimization of the radial outward (or inward) measure-=
ment might proceed by several iterations of the following steps:

1) Find the link not yet tried for this iteration for which the
product of the link length times the angle between the link and the
radially outward (or inward) vector from (or to) the fixed center to
(or from) the midpoint of the link is largest. Call this link i. If all
links have been tried, the realization process is terminated.

2) Using the center of link i as a pivotal point, rotate the
link until it lies in the direction of the radially outward (or inward)
vector. If the resultant measurement of outward (or inward) radial-

ity, Ro (or Ri) is not improved, or if the new node positions cause
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overlap, return the link to its original position, and go back to step 1;

otherwise, the new position is kept, and the iteration is complete.

Similarly, for circular movement, in step 1 we look for the
link which deviates the most from the directed tangent at the link
center point to a circle with the fixed center as its center. And in
step 2, we rotate s;lch a link until it is oriented in the direction of the
tangent.

Examples of these two realization methods are shown in fig-
ures 2-43 and 2-44. Figure 2-43 shows a series of two iterations to
improve Ro, and figure 2-44, to improve C_ . Lozenges indicate the
chosen fixed centers. The discussion of the problems relating to the
method given for realization of linear directional consistency also

applies here.

IV

= .75
o

o (o] o

(i) (ii) (iii)
Figure 2-43
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C =.60 C = .82 C =.94

— - —

(i) (ii) (iii)
Figure 2-44

As a final note in the discussion of directional consistency we
mention that several algorithms have been developed for the linear
case. These methods, such as the one developed by Di Giulio and
Tuan (12) which were intended for the layout of directed networks,
attempt to place elements so that, if one element feeds another, the
first lies consistently to one horizontal side of the second (say, to
the left). The vertical coordinates are then chosen so that intersec-
tions are minimized. These algorithms are not actually concerned
with the measure L, as we are, but the results tend to produce

similar effects.

2.2.2.6 Minimum Number of Bends

The next quality to be considered for realization is the num-
ber of bends in a layout. As mentioned above, Fary has proven that
every planar graph without self-loops and parallel links may be

drawn without bends. A constructive realization algorithm may be
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derived from his proof. This algorithm is recursive in that it finds a
bend-free layout for the subparts of the original underlying graph
before it can build the final layout for the whole graph. It is described
and illustrated briefly below. * The steps mentioned are guaranteed to
be possible as a result of Fary's proof. Given a layout, G, to obtain
a straight line (bend-free) representation, S(G):

A) Form a triangulated version of G, G’, and go to step B.
A triangulated version of a layout, G, is that layout with enough links
added so that every region is bounded by exactly three links.

B) If G’ has three nodes, form an equilateral triangle of the
nodes, call it S(G’) and go to step C. If G’ has more than three
nodes, pick an interior node, n, of maximal degree, m, and label

the nodes adjacent to it in clockwise order of links as n,,..., nm.

ll

If there is a node n, 2 <i<m, such that n.n) is in G’, perform

1
(2) below; else, perform (1) below:
(1) Form Gl' from G’ without node n and its links.
Find S(Gl') (i. e., apply this algorithm to Gl'). S(G’) is then
S(Gl') with node n and its links placed inside the region

bounded by the circuit containing links n.n_, n_n_,..., n_n_,

12 23 m 1

b3
Although the algorithm uses a layout as its input, this layout
is essentially ignored in the resultant layout. Hence, the algorithm
is considered to be a constructive realization algorithm.
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so that no link adjacent to node n intersects with any of the

links n.n.

M4l (i=1,..., m=-1); go to step C.

(2) Form two layouts:

(i) G! , including the cycle n.n, nn,, n.n, and all
11 1 i’ 171
links and nodes inside this cycle in G’. Find S(Gl' ) (i. e.,

1
apply this algorithm to Gl' ).
1

(ii) Gl' , including the cycle n,n, nn,, n.n and all
links and nodeszoutside this cycle in G’. Find S(Gl'z) (i. e.,
apply this algorithm to Gl'z).
S(G’) is the result of placing the interior of S(Gl'l) inside
the region n n, nn,, n.n in S(Gl' ). Go to step C.

2
C) S(G) is S(G’) with the links added in step A removed.

Processing is then complete for S(G).

An illustration is given in figure 2-45. Relevant steps are
noted in parentheses. The superscript stars act as left parentheses
and the subscript stars as right parentheses in the recursion.

This algorithm works well with those layouts whose under -
lying graphs are planar, in the case that the user prefers a construc-
tive algorithm. However, it seems wise to also explore the possi-
bility of defining a modifying algorithm which may be applied to all
layouts. Let us try to describe such an algorithm.

For each bend point in the layout, in turn, examine the two

points (either nodes or other bend points) adjacent to this bend point.
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Figure 2-45
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2 2
Figure 2-45 (continued)

Call these adjacent points a and b. If a straight line can be drawn
from a to b without intersecting any link segment or node, it is
drawn, and this bend point is removed. However, if some obstruc-

tion exists between a and b, it must be removed, before we can
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draw a straight line between a and b to remove this bend.

It is here that we run into difficulty. The removal of such an
obstruction involves a modification of node (and possibly other bend
point) positions of the layout, and may be done in several ways. We
may somehow move one or both of the two points, a and b, or we
may move other points from one side of the line a,b to the other in
some manner. The problem here is that for different cases, the
manner of modification should be different, and it is difficult to
determine automatically what type of movement is appropriate in a
given case.

For example, in figure 2-46a, it is quite clear that a and b
should be moved to the left, whereas, in figures 2-46b and 2-46c,

we should move nodes other than a and b, in one case to the right

o a
a
=Me <=1
b b b
(a) (b)
—® 2 a
7297
b b

(c)

Figure 2-46
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of (a,b), and, in the other, both ways. Thus we have the dilemma of
determining for each case, what type of modification is best suited to
the layout. Furthermore, it is not even clear that we should treat
bends one at a time. In 2-46¢c, for example, we have similar condi-
tions for both bends, and processing them simultaneously would be
wise.

This discussion leads us to the conclusion that, in fact, the
best modifying approach to bend point removal is manual, rather than
automatic. This is supported by the fact that, unlike realization
processes for most other qualities, that for bend removal is quite
easy for the user to accomplish manually. There is no measure to be
taken except the counting of bends, and all effects are visual. In
anticipation of this conclusion, the MOD system, as will be seen in
section 2.3, has been designed so that addition and removal of bend
points is a simple operation. Thus, again we choose to depend on
the interactive nature of the environment in which we are working,
rather than developing a complex algorithm to perform a relatively

simple task.

2¢2.2.7 Minimum Number of Intersections

The next problem to be discussed, the minimization of the
number of intersections in a layout, is one which has been studied

for many years and is considered to be a key problem in the
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automatic generation of printed circuit layouts. As a result, many
constructive algorithms have been proposed, as well as what we shall
call semi-constructive algorithms, those for which node positions
are prespecified, and link paths are to be generated.

Underlying many of these semi-constructive algorithms we
find the basic idea developed by Lee (24), of finding paths for wires
(links) given element (node) positions and the positions of other wires.
This approach performs a search which finds the optimal path accord-
ing to any criterion prespecified by the user. With this method paths
are found for the wires one at a time. Breuer (9) notes that the order
in which wires are placed with this method affects the results and lay-
out. Vincent-Carrefaur (37) skirts this problem by proposing that all
wire paths be generated simultaneously. In section 3.2.2,5 these
ideas will be elaborated further, along with other methods for mini-
mizing intersections which were developed for the purpose of auto-
matic circuit layout.

However, we would now like to consider a modifying algorithm
aimed at achieving fewer intersections in a layout, while changing as
little as possible. A seven-step algorithm which accomplishes this
is given below. The main idea of the algorithm is to move nodes
from one region to another in order to minimize the number of inter -
sections. Nodes are considered one at a time, and are placed in a

region of the layout which minimizes the number of intersections in
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which the links adjacent to that node are involved. Once a node has
been moved in such a way that the number of intersections is reduced,
the algorithm is restarted. If all nodes are tried and no improvement
found, the algorithm terminates.

A large part of the algorithm is concerned with determining
the order in which nodes should be considered. Nodes which involve
the largest number of intersections are considered first. Initially
we only allow moves which remove all the intersections a node is
involved in. If no such move is possible for any of the nodes, we
then try moves which remove all but one intersection for a node. If
this fails, we allow two intersections, and so forth. This process is
controlled with a counter, I, in the algorithm.

The algorithm is then as follows, given a layout, L:

1) For each node n, find the number of intersections there
are involving links adjacent to n, and call this number In. Call the
degree of node n, Dn. Go to step 2.

2) Form an ordered list of nodes as follows:

n. n

¥1 >1 then n. precedes n.. If I =1 and
n, nj i j ; ;

D <D , then n, precedes n.. If 1 =In and Dn =Dn , then

n, n, i ) n, " 2 )
i j 1 j 1 j
order is arbitrary for the two. Call this list NODES, SetI =0, and

go to step 3.
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3) Remove all nodes, n., from NODES for which In, < I
N
Go to step 4.

4) If NODES is empty, terminate the algorithm witk L as the
resultant layout; otherwise, mark all nodes in NODES unprocessed,
and go to step 5.

5) If all nodes in NODES have been processed, add one to I
and go to step 3; otherwise, go to step 6.

6) Take the first unprocessed node in the list NODES, call
it n. and mark it as processed. Form a set called CONNECT of
nodes to which n, is adjacent. Remove n. and all connected links
from L. Make temporary nodes of all remaining points of inter -
section, and call this new lavout L’, Go to step 7.

7) (a) Look for a region R of L’ (the infinite region should
also be considered, i.e. that surrounding the whole layout), for
which Dn. - I nodes of CONNECT lie on its boundary, and for which
if node ni1 were placed inside R, each of the nodes of CONNECT,

p, not on the boundary, may be joined to n, with exactly one inter-
section resulting from the connection (i. e. they lie on the boundaries
of regions adjacent to the region, R).

(b) If such an. R 1is not found, restore the layout to L
and go to step 5. If such an R is found, remove the temporary

nodes, place n, in R, and draw the links as specified above (bends

are allowed). The result is the new layout L. Go to step 1.
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A few comments on the algorithm will be helpful. Each time
the algorithm returns to step 1, a reduction has been made in the
number of intersections. Since there is a lower limit for this number
for every graph, the algorithm always terminates. As mentioned
above, the counter I indicates how many intersections are allowed
in finding a new position for the node n, under consideration in step
6~7. In the first iteration of a pass through the algorithm I is zero,
indicating that we will only move a node to a new position when a
position can be found which makes all the links of the node intersec-
tion free. If no position can be found for any of the nodes under this
condition, we have another iteration in which we allow positions
which remove all but one intersection for a2 node, etc. When I is
large enough so that we are removing no intersections for a given
node, we no longer consider that node (step 3). When no nodes
remain to be considered, due to the size of I, the process is ter-
minated.

The question remains as to whether or not this process finds
the minimum number of intersections for the graph underlying the
given layout. We make no attempt here to prove or even to claim
such results from this algorithm. Such a claim would be extremely
difficult to prove, since, even at the present time, expressions and
methods to find such minima are quite complex or non-existent. We

can only guarantee that for each pass through the algorithm either the
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H
number of intersections is reduced or the algorithm terminates.

The example shown in figure 2-47 illustrates the process.
Each line is to be read from left to right. The pairs (In, Dn) are
shown adjacent to the nodes where appropriate. Single numbers give
positions in the list NODES, Nodes drawn as empty circles indicate
that they are members of CONNECT, and nodes shown as lozenges
are temporary nodes. Regions which satisfy the conditions in step 7
are indicated by R's. New layouts are shown only when changes
warrant it. When a node number is slashed it has been processed,

otherwise it is considered unprocessed.

“An alternative and more complex procedure exists for step 7,
which produces more possibilities for the placement of a node nj
with Dni links, and I intersections. Some of these possibilities
are not considered in the algorithm as written, but may turn out to

be necessary for guaranteeing a minimal result. In order to include
these possibilities, step 7a would proceed as follows:

(7a) Look for a region R of L’ (the infinite region included)
for which if we placed nj in R, the integers ag,..., aj satisfy the
following conditions:

I
1) z a, =D
k=0 s l’11

N1 =

2) ka =1

k=0 s
3) a nodes of CONNECT lie on the boundary of R,
4) For each of ay (k=1,..., I) nodes of connect, n,

a minimum of k intersections are required to connect n; and n.
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Figure 2-47
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step 4,5,6, 7a

n=3,D =3
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Figure 2-47 (continued)
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2.2.2.8 Minimum Link Length

The problem of decreasing total link length has also been of
concern to the developers of methods for automatic circuit layout.
Thus many algorithms, both constructive and modifying have been
devised and are discussed in section 3.2.2.5. Among them Lee's
algorithm mentioned above as a semi-constructive algorithm may be
used for this purpose.

However, another algorithm, developed by Steinberg (33)
meets the requirements of a modifying algorithm for minimization
of link length quite well. The details of this algorithm are given in
section 3.2.2.5. In summary, Steinberg's method finds a group of
unconnected nodes, removes them from the layout, and then reposi-
tions these nodes in a manner which minimizes the total length of
the links to which they are adjacent. Each set of unconnected nodes
is processed, in turn, in this manner until no more improvement
can be made. Variations and improvements on this scheme have

been considered by Rutman (32).

2.2.2.9 Parallelism

Next we consider methods to minimize the number of differ-
ent link slopes in a layout (or to increase parallelism). One trivial
solution might be to redraw all the links as series of horizontal and

vertical segments, wherever possible. This method would guarantee
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to yield the minimum number of slopes for a layout, but it may
require the introduction of several bend points, and does not conform
with our idea of changing the layout as little as possible.

A more reasonable modifying algorithm is given in Appendix 4.
It is not included in the text due to its length. The idea of this algor-
ithm is to first place all of the link segments into sets. Once these
sets of link segments have been formed, the link segments in each
set are adjusted so that they are parallel to one another where pos-
sible. As the algorithm is now written, originally parallel link seg-
ments remain parallel. Again, the algorithm appears in Appendix 4,

along with a discussion, and an example of its use.

2.2.2.10 Horizontal-Vertical Orientation

The final quality to be considered for realization is that of
horizontal-vertical link segment orientation. A method which accom-
plishes this by reorientation of the links in these two directions has
been implemented in the MOD system and is described in section
2.3.3 as a series of two commands, merge c and merge r.

In summary, we have considered the measurement and rea-
lization of many of the qualities discussed in section 2. 1. Realization
algorithms were developed which, for the most part, are intended for
implementation in an interactive graph building and layout environ-

ment such as that described in the next section. Discussion of
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algorithms for a few of the qualities was delayed until section 2. 3. 3,
since these algorithms have already been implemented in the MOD

output system.

2.3 THE MOD SYSTEM

The MOD system was developed to provide an interactive
graphics environment for experimentation with various layout typecs
and layout algorithms. It has been implemented on a PDP-1 with 6k
of 18-bit core along with a drum, a teletype, and paper tape I/0O.
Peripheral equipment used included a typewriter, a dectape unit, a
Calcomp plotter, a refreshing CRT, and a Rand fablet.

The system was designed in three parts: Mod Input, Mod
Framemaker, and Mod Output. Mod Input allows the user to draw
and modify graph layouts of several types, to store these on paper
tape, and plot them on a Calcomp plotter. Graph layouts previously
drawn and stored on paper tape may be read into MOD Input and
processed again. The MOD Framemaker is similar to MOD Input,
except that no Calcomp output is possible. Instead, a facility has
been provided with which the user may store sequences of graph lay-
outs (frames) on dectape or temporarily on the drum. These se-
quences may later be replayed or modified through the Framemaker.
The motivation for this system was to provide a facility for making

films or videotapes using the results of the rest of the MOD system.
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The third part, MOD Output, was intended for experimenta-
tion with layout algorithms such as those described in section 2. 2. 2.
Graph layouts may be read in on paper tape, but their structure may
not be modified. The only changes allowed are those involving the
layout of the given graph. Again, the output may be either paper
tape or Calcomp plotter.

The following three subsections describe in more detail how
these three systems are used. Further details on the structure of
the system may be found in Appendix 5. The last of the subsections
also includes a more detailed discussion of the layout algorithms

implemented in the MOD system at the present time.

2.3.1 The Input System

The MOD Input system provides a means for inputing various
types of graph layouts. The user first selects the kind of graph lay-
out he wishes to draw, and then proceeds to draw graph layouts of
this type. He may output the graph layouts either on paper tape or
on the Calcomp plotter.

Upon starting, the system types out the options from which a
user must select a graph layout type. The options are:

1. a) directed
b) undirected

2. a) net
b) graph
3. a) adp's
b) none
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4. a) ep's
b) none
5. a) shapes
b) standard
6. a) define shapes

b) no
7. a) functions
b) none

Option 1 is clear. Option 2 allows the user to specify that
either
a) links may branch, or
b) links may not branch.
Option 3 specifies that the nodes in the graph layouts to be drawn
may include, in their definition, certain points from which links or
arcs may originate (arc departure points, ADP's). Normally, a
link leaves a node from its center point, with that portion of the link
which lies inside the node removed from the graph layout. When
ADP's are specified for a node, the user may draw a link either
from an ADP or from the center of the node. Option 4 provides for
arc entry points (EP's) which are similar in nature to ADP's, except
that they specify points on nodes at which links may terminate.
Again, the center point may be used for termination.
Option 5 allows the user to choose between using one standard
node shape, provided by the system (a square), or several shapes,
either defined by the user or read in on paper tape (N.B., this last

facility has not yet been implemented)., Option 6 specifies whether
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the user is to define these shapes or read them in. Option 7 provides
the user the ability when he is defining shapes to associate a number
with each shape he defines, which will be stored with that shape.

Note that 6a may only be used if 5a was specified. The
sequence 5a, 6b implies a facility not yet available. Option 7a may
only be chosen if 6a was chosen.

Upon completion of the option specification, the main frame
for MOD Input appears on the scope. From this point on, the system
is controlled, for the most part, with the Rand tablet. The main
frame is shown in figure 2-48. Pen position is shown by a small
"+'" on the scope.

If the user has chosen to use the standard node shape, this
shape will appear at the top of the right hand column. In this case
the words ''page' and ''define' will not appear in the menu at the
bottom of the main frame. On the other hand, if he chooses to define
node shapes, those he has defined will appear in this column. If
there are too many shapes to fit into this space, pointing to '‘page"
will cause another group of defined shapes to appear.

At this point in the use of MOD there is a current shape.
Initially, this is null. To make a shape current, the user must point
to its prototype in the right hand column.

To define shapes, the user points to ''define.'" The main

frame is replaced by the define frame (see figure 2-49). All shapes
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already defined and filed appear to the left in this frame. To define
a new shape, the user first points to 'line." As long as 'line"
remains illuminated, he may draw lines in the box on the right of the
define frame, and these will be recorded as part of his shape defini-
tion. Each line must begin and end inside the box. To begin a line
the pen is pressed down; the line ends when the pen is lifted. If a
line is begun inside the box but the pen is taken out of the box before
the line is completed, no line is remembered, but the word 'line"
remains illuminated.

If functions have been specified (Option 7) the word '"function"
appears in the define frame menu. Pointing to function causes the
typewriter to output ''type two numbers.' The user must respond by
typing two digits between 0 and 7, which then become the function
name for the shape he is defining. He may change the function name
by simply repeating this procedure. Initially the function name for a
shape is ''00. "

If ADP's (Option 3) have been specified, the word ''adp"
appears<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>